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Abstract

Premature failures or malfunctions often occur in a mechanical system that has periodically repeated subcomponents.

Due to slight irregularities among subcomponents of the periodic system, maximal frequency responses of a few

subcomponents become often significantly larger than those of other subcomponents. These phenomena, called frequency

response localization, need to be analyzed elaborately for reliable designs of the periodic systems. In the present study, the

strength of frequency response localization for the periodic system is defined and the effects of some parameters on the

strength of frequency response localization are investigated statistically.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Periodic systems, in which several subcomponents are repeated, can be found in some engineering examples
such as helicopter blades (the number of subcomponents is usually 2–4) and turbine blades (the number of
subcomponents is usually more than 20). In periodic systems, however, their subcomponents are not perfectly
identical since irregularities among subcomponents always exist due to manufacturing tolerances, material
degeneration and operation wears. Such periodic systems that have slight irregularities among their
subcomponents are called nearly periodic systems in this study. If all the subcomponents are perfectly identical
and excited by an identical force, the magnitudes of their frequency responses should be identical, too.
Compared to the identical frequency response (of a perfectly periodic system), those of a few subcomponents
of a nearly periodic system often become significantly large. These phenomena, called the frequency response
localization in this study, often cause unexpected premature failures of the periodic systems. Therefore, they
should be analyzed elaborately for reliable designs of the systems.

Since Anderson [1] pioneered the localization phenomena in solid-state physics, the localization phenomena
have drawn attention from several researchers in engineering fields. Ewins [2–5] showed that the maximal
forced response increases with increasing irregularity among subcomponents of a periodic system up to certain
level. However, further increase results in lower forced response. Bendiksen [6,7] investigated the mode
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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localization of the turbine blade system using a simple coupled pendulum system. Pierre et al. [8,9] investigated
the mode localization of a multi-span system by perturbation method and also introduced intentional
irregularities [10,11] into the design of a bladed-disk system to reduce maximal transient responses.

When a subcomponent of a periodic system is excited, the transient response decays away from the
excitation source. The rate of decay is normally quantified by a parameter known as localization factor, which
has been often used to measure the strength of the localization. The localization factor due to irregularity was
first defined by Hodges and Woodhouse [12], and employed to investigate localization phenomena in periodic
systems by several other researchers (see, for instance, Refs. [13–15]). More recently, Yoo et al. [16] introduced
a different way of analyzing localization, which employs multi-excitation forces acting on all subcomponents
of a periodic system simultaneously. By employing the multi-excitation force model, they found that strong
frequency response localization could occur when the pendulum length irregularity was related to the coupling
stiffness in a specific way.

Several analytical methods were also developed to obtain statistical results for nearly periodic systems.
Huang [17] considered the blade lengths as statistical variables and developed an analytical method to generate
the mean and the variance of the blade vibration amplitudes, which employs a perturbation technique. Sinha
[18] combined the first-order perturbation method with a statistical theory to yield probability density
functions. Wei and Pierre [19] showed that some statistical properties such as the mean and the variance of the
largest amplitude cannot be generated through the aforementioned analytical techniques. They showed that
the Monte Carlo simulation method could be applied to obtain the statistical properties for weakly coupled
systems.

In the present study, the multi-excitation force model introduced in Ref. [16] is employed to investigate the
frequency response localization phenomena. A simple definition of the strength of frequency response
localization is proposed and the effects of some parameters on the localization strength are investigated
statistically by employing a coupled multi-pendulum model. The probabilities (that the localization strength
exceeds a certain value) versus the statistical properties of the parameters are calculated through Monte Carlo
simulation. The present approach is especially valuable for the designs of periodic systems to avoid
(or enhance) the frequency response localization.

2. Simplified modeling of nearly periodic systems

Nearly periodic systems consist of repeated subcomponents that possess nearly identical structural
topology. Fig. 1 shows a coupled pendulum system that represents the nearly periodic system. Each pendulum,
which is a subcomponent of the nearly periodic system, consists of a mass m, a rotational spring having
Fig. 1. Coupled multiple pendulum system.
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modulus ki
r, and two translational springs having modulus ki

t and ki�1
t . The distances from a hinge point to a

translational spring attachment point and the length of all pendulums are denoted by a and l, respectively.
Even though damping is not shown in Fig. 1, linear viscous damping force is assumed to act on every
pendulum mass. The damping constant and the excitation force for the ith pendulum are denoted by ci and F i,
respectively. Then the equation of motion of the ith pendulum can be derived as follows:

ml2 €y
i
þ cil2 _y

i
þ ki

ry
i
� ki�1

t a2yi�1
þ ðki�1

t þ ki
tÞa
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¼ Fil. (1)

To obtain more general and useful conclusions, the equations of motion are transformed into dimensionless
forms. For the purpose, three dimensionless parameters and two dimensionless variables are defined as
follows:
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where kr represents the mean of ki
r’s. The physical meanings of Bi, bi, fi and t are damping ratio, dimensionless

coupling stiffness, dimensionless excitation force, and dimensionless time, respectively. The symbol oi denotes
the dimensionless natural frequency of the ith pendulum when the pendulum has no coupling stiffness.

Since the variation of the dimensionless natural frequency oi can be achieved by changing the rotational
spring stiffness (ki

r), the mass and the length of all pendulums are assumed constant in this study. Also, the
distance a is assumed constant since the variation of the dimensionless coupling stiffness bi can be achieved by
changing the translational spring stiffness (ki

t).
Employing the three dimensionless parameters and variables, Eq. (1) can be rewritten as follows:
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where a dot over a symbol now represents the differentiation of the symbol with respect to the dimensionless
time t. Therefore, the equations of motion of the pendulum system can be written in a matrix form as follows:
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Taking Fourier transformation of Eq. (4) yields the following matrix equation:

ð�o2½I � þ jo½C� þ ½K �Þfȳg ¼ ff̄ g, (6)

where fȳg and ff̄ g are the Fourier transformations of {y} and {f}, respectively. Now, from Eq. (6), one can
obtain fȳg which represents the frequency response of the pendulum system. The frequency response
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amplitude of the ith pendulum is jȳij. Substituting ȳi ¼ X i þ jY i into Eq. (6), the following equation can be
derived:

�o2½I � þ ½K � �o½C�

o½C� �o2½I � þ ½K �

" #
fX g

fY g

( )
¼
ff̄ g

0

( )
. (7)

The excitation forces, acting on all pendulums, are assumed to have the same white random property in the
present study. So, a constant value for f̄ i is used to obtain Xi and Yi. However, any pattern of f̄ i may be
employed for the analysis if needed.

Since jȳij is a function of o, the maximum value of jȳij, denoted as jȳi maxj, exists at a certain frequency o.
The frequency (at which the maximum frequency response occurs) can be obtained by solving an eigenvalue
problem for which the mass, the damping, and the stiffness matrices in Eq. (4) are employed.

The strength of frequency response localization will be defined by comparing the maximum frequency
responses (jȳi maxj’s) of a nearly periodic system to a standard value jȳstj. For the reference value jȳstj, the
maximum frequency response of an uncoupled perfectly periodic system (i.e. oi ¼ 1, bi ¼ 0) with a standard
damping ratio Bst will be employed. Now, dimensionless maximum frequency responses of a nearly periodic
system are defined as follows:

ki �
jȳi maxj

jȳstj
. (8)

Then the strength of frequency response localization is defined as the maximum value among ki’s and it will be
denoted as k. Thus,

k ¼Maxðk1; k2; . . . ; knÞ. (9)

Since ki depends on the value of the standard damping ratio Bst, k also depends on the value, too. Later, a
small value for Bst will be chosen for the numerical simulation since the lightly damped periodic system is the
major concern in this study.

3. Numerical results and discussion

In the present section, the probability that the frequency response localization strength exceeds certain value
will be calculated through Monte Carlo simulation for which oi, bi, and Bi are employed as input parameters.
Normal distributions for the input parameters are assumed in the present study even if the distribution
patterns of actual problems may differ from the normal distribution. The effects of various distribution
patterns on the frequency response localization phenomena are not considered in the present study.

The simulation procedure can be summarized as follows. Input parameter sets are created with a random
number generator. The number of parameter sets that is enough to guarantee the convergence of the statistical
properties of the output (the frequency response localization strength) is determined first through convergence
study. Then, for each parameter set, the frequency response equations are solved and the strength of the
localization is calculated. Lastly, by counting the number of samples in which a given criterion for the
localization strength is satisfied, the probability is calculated.

The following simple case is considered first to explain the frequency response localization. The number of
pendulum is 2 and all the system parameters are given as deterministic values. As the index number changes,
oi may vary while Bi and bi remain invariant. In other words, B1 ¼ B2 ¼ B and b1 ¼ b2 ¼ b. The following three
sets (for o1, o2, B, b) are employed to obtain frequency responses: (1.0, 1.0, 0.005, 0.002), (1.0, 1.024, 0.005,
0.002), and (1.0, 1.024, 0.005, 0.012). Numerical results for the three sets are shown in Fig. 2. Fig. 2(a) shows
the frequency response curves of the first set. Since no irregularity exists in this case, the frequency response
curves for the two pendulums are identical. Figs. 2(b) and (c) show the frequency response curves of the
second and the third sets. As shown in the figures, the small irregularity between o1 and o2 causes the
significant difference of frequency response curves. It can also be observed that the coupling stiffness variation
(see the difference between Figs. 2(b) and (c)) could increase the frequency response difference more
significantly.
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Fig. 2. Frequency response curves obtained with three parameter sets. (a) Identical curves for same natural frequencies, (b) distinct curves

for different natural frequencies (with the weaker coupling stiffness), and (c) distinct curves for different natural frequencies (with the

stronger coupling stiffness).

Fig. 3. The strength of frequency response localization in o2�b plane (o1 ¼ 1:0, B ¼ 0:005).
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Fig. 3 shows the variation of the localization strength k in o2�b plane, where o1 ¼ 1:0 and B ¼ 0:005 are
employed to obtain the results. The same value as the above damping ratio is employed for the standard
damping ratio Bst to calculate the localization strength k. As can be observed in the figure, once o2 is given, one
can maximize the localization strength by changing the coupling stiffness b. In other words, there exists a
certain relation between o2 and b that can maximize the localization strength.

From now on, the effects of statistical properties of dimensionless parameters oi, b and B on the frequency
response localization will be discussed. The standard damping ratio Bst ¼ 0:005 is employed to calculate k
throughout this study. First, the convergence of Monte Carlo simulation method is checked for typical cases.
Table 1 shows typical convergence trends of the mean and the standard deviation of k as well as probabilities
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Table 1

Convergence of the statistical properties of the strength of frequency response localization versus number of samples in Monte Carlo

simulation

Number of samples Mean of k Standard deviation of k Probability of kXkc

Tuned Mistuned Tuned Mistuned Tuned Mistuned

10 1.115 1.198 0.041 0.064 0.600 0.700

100 1.100 1.178 0.058 0.072 0.530 0.390

1000 1.103 1.180 0.064 0.072 0.506 0.397

10000 1.102 1.181 0.066 0.074 0.501 0.405

100000 1.103 1.181 0.066 0.074 0.507 0.404

Tuned: Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0, soi
¼ 0:01, EðbÞ ¼ 0:002, s̄b ¼ 0:05, EðBÞ ¼ 0:005, s̄B ¼ 0:05, kc ¼ 1:1.

Mistuned: Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:024, soi
¼ 0:01, EðbÞ ¼ 0:012, s̄b ¼ 0:05, EðBÞ ¼ 0:005, s̄B ¼ 0:05, kc ¼ 1:2.

Fig. 4. Probability kXkc versus the standard deviation of oi’s. (a) Tuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005,
s̄b ¼ 0:05, s̄B ¼ 0:05), and (b) mistuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:024, EðbÞ ¼ 0:012, EðBÞ ¼ 0:005, s̄b ¼ 0:05, s̄B ¼ 0:05).
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of criteria (that k exceeds certain values). Two cases of parameters are employed to obtain the results of the
table, where the statistical properties of oi’s, b and B are given. The first case will be called hereafter the tuned
case, where EðbÞ ¼ 0:002, s̄b ¼ 0:05, EðBÞ ¼ 0:005, s̄B ¼ 0:05, Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0 and soi

¼ 0:01 are
employed. The symbol s̄b denotes the normalized standard deviation of the coupling stiffness, i.e. sb/E(b), and
s̄B denotes the normalized standard deviation of the damping ratio, i.e. sB/E(B). The second case will be called
hereafter the mistuned case, where EðbÞ ¼ 0:012, s̄b ¼ 0:05, EðBÞ ¼ 0:005, s̄B ¼ 0:05, Eðo1Þ ¼ 1:0, Eðo2Þ ¼

1:024 and soi
¼ 0:01 are employed. The table shows that the statistical properties of the output converge

reasonably fast as the number of sampling data increases. To save the computation time while maintaining
reasonable simulation accuracy, 10,000 sampling data are employed to obtain the numerical results
hereinafter.

Fig. 4 shows the probability of kXkc versus soi
(the standard deviation of oi‘s). All the statistical properties

except soi
for the tuned and the mistuned cases are employed to obtain the results. It can be observed in

Fig. 4(a) that the localization strength k cannot exceed 1.25 for the tuned case. It can also be observed that the
probability becomes relatively high at certain standard deviation range (around soi

¼ 0:005 in this case). To
reduce the probability of kX1.1 for this tuned system, one should avoid the region. In other words, if not
reduced sufficiently, the reduction of soi

may increase the probability. Fig. 4(b) shows that the strength of
localization can reach 1.35 for the mistuned case. However, as kc exceeds 1.2, the probability decreases
rapidly. This figure also shows that the standard deviation of oi’s does not significantly affect the probability
for the mistuned system.

Fig. 5 shows the probability of kXkc in the plane of so2
� so1

. Again, all the statistical properties except soi

for the tuned and the mistuned cases are employed to obtain the results. A relatively high probability region
(a quarter circle band) can be observed in Fig. 5(a). This indicates that one should reduce the square root sum
of the standard deviations sufficiently if a very low probability is required. As discussed previously in Fig. 4(a),
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Fig. 5. Probability of kXkc in the plane of so2
� so1

. (a) Tuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005, s̄b ¼ 0:05,
s̄B ¼ 0:05), and (b) mistuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:024, EðbÞ ¼ 0:012, EðBÞ ¼ 0:005, s̄b ¼ 0:05, s̄B ¼ 0:05).

Fig. 6. Probability of kX1.1 in the plane of soi
� E½o2�. (a) Weaker coupling case (Eðo1Þ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005, s̄b ¼ 0:05,

s̄B ¼ 0:05), and (b) stronger coupling case (Eðo1Þ ¼ 1:0, EðbÞ ¼ 0:012, EðBÞ ¼ 0:005, s̄b ¼ 0:05, s̄B ¼ 0:05).
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a tactless reduction of soi
may increase the probability. Fig. 5(b) shows the results of the mistuned case. As

shown in the figure, a relatively high probability region is concentrated around the origin. Since this system is
intentionally designed to achieve certain strength of response localization, one might want to increase the
probability as high as possible. As shown in the figure, the tolerance should be reduced sufficiently to achieve
such target. However, even if the square root sum is decreased, the probability cannot exceed certain value
with the criterion kX1.2. If the criterion were kX1.1, high probability could have been achieved even with
relatively large soi

’s (see Fig. 4(b)).
Fig. 6 shows the probability of kX1.1 in the plane of soi

� E½o2�. All the statistical properties except soi

and E(o2) for the tuned and the mistuned cases are employed to obtain the results. One can observe that the
probability of kX1.1 is increased with the stronger coupling stiffness value in most of the plane. However, as
can be observed by comparing Figs. 6(a) and (b), the low-probability region (that exists around Eðo2Þ ¼ 1:0
and soi

¼ 0) is also significantly enlarged by the stronger coupling stiffness. Therefore, if the probability of
certain strength response localization needs to be reduced, the mean value of the coupling stiffness needs to be
increased while maintaining soi

within a certain small value range.
Fig. 7 shows the probability of kXkc in the plane of soi

� E½b�. All the statistical properties except soi

and E(b) for the tuned and the mistuned cases are employed to obtain the results. As can be observed from
Fig. 7(a), there exists an approximate relation between E(b) and soi

that maximize the probability (see the
white broken solid line in Fig. 7(a)). The low probability can be achieved by staying away from the white
broken solid line. If a certain small value for soi

is already given, it is more effective to increase E(b) to reduce
the probability as discussed in the previous paragraph. However, if the value for soi

is relatively large, it is
more effective to decrease E(b) to reduce the probability. For the mistuned case (shown in Fig. 7(b)),
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Fig. 7. Probability of kXkc in the plane of soi
� E½b�. (a) Tuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0, EðBÞ ¼ 0:005, s̄b ¼ 0:05, s̄B ¼ 0:05), and

(b) mistuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:024, EðBÞ ¼ 0:005, s̄b ¼ 0:05, s̄B ¼ 0:05).

Fig. 8. Probability of kXkc in the plane of soi
� s̄b. (a) Tuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005, s̄B ¼ 0:05),

and (b) mistuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:024, EðbÞ ¼ 0:012, EðBÞ ¼ 0:005, s̄B ¼ 0:05).
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providing a small value for soi
(less than 0.005) while maintaining E(b) within the range of 0.01–0.015 is the

most effective way to increase the probability.
Fig. 8 shows the probability of kXkc in the plane of soi

� s̄b. All the statistical properties except soi
and s̄b

for the tuned and the mistuned cases are employed to obtain the results. To prevent negative coupling stiffness
from being created by the random number generator, a restricted range of s̄b is considered here. The results of
the figures show that the probability is rarely influenced by the standard deviation of the coupling stiffness in
both cases. In other words, one need not prescribe a tight coupling stiffness tolerance to reduce (or enhance)
the localization phenomena.

Fig. 9 shows the probability of kXkc in the plane of soi
� s̄B. All the statistical properties except soi

and s̄B
for the tuned and the mistuned cases are employed to obtain the results. Fig. 9(a) shows that s̄B influences
the probability slightly. However, if a very low probability is required, s̄B should be sufficiently decreased.
Fig. 9(b) shows that s̄B as well as soi

needs to be decreased sufficiently to guarantee a very high localization
probability for the mistuned case. Therefore, s̄B needs to be controlled tightly when a very low or high
probability is required.

Fig. 10 shows the probability of kXkc in the plane of soi
� E½B�. All the statistical properties except soi

, E[B]
and sB for the tuned and the mistuned cases are employed to obtain the results. Instead of using s̄B ¼ 0:05
(which results in the variation of sB as E[B] varies), sB ¼ 0:0005 is employed for the results of Fig. 10. As shown
in the figures, the mean value of damping ratio E[B] is the most critical factor for the localization strength. The
probability can be easily decreased or increased by increasing or decreasing the mean value of the damping
ratio in both cases. Therefore, even if the relative difference between two frequency response curves is
significant (so that the responses are localized), the absolute value of the difference becomes small as E[B]
increases. One should note that Bst ¼ 0:005 is employed in the present study.
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Fig. 10. Probability of kXkc in the plane of soi
� E½B�. (a) Tuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0, EðbÞ ¼ 0:002, s̄b ¼ 0:05, sB ¼ 0:0005),

and (b) mistuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:024, EðbÞ ¼ 0:012, s̄b ¼ 0:05, sB ¼ 0:0005).

Fig. 9. Probability of kXkc in the plane of soi
� s̄B. (a) Tuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005, s̄b ¼ 0:05),

and (b) mistuned case (Eðo1Þ ¼ 1:0, Eðo2Þ ¼ 1:024, EðbÞ ¼ 0:012, EðBÞ ¼ 0:005, s̄b ¼ 0:05).
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It is difficult to investigate the frequency response localization properties of a nearly periodic system if too
many statistical parameters are involved in the system. Therefore, only the double pendulum case has been
considered so far. The statistical effects of the coupling parameter and the damping parameter on the
frequency localization properties are clearly exhibited with the simple model. Such effects are true for multi-
degree models, too. In the following, effects of some statistical parameter properties along with the number of
subcomponents on the probability of frequency response localization will be discussed.

In Fig. 11, variations of the probability versus the standard deviation of oi’s for various subcomponent
numbers are given. All the statistical properties except soi

for the tuned case are employed to obtain the
results. As can be shown in the figure, the probability increases as the number of subcomponents increases. It
can also be observed that the standard deviation where the maximum probability occurs decreases as the
number of subcomponents increases. Thus, to reduce the probability sufficiently, the standard deviation soi

should be decreased more as the number of subcomponents increases. Therefore, in general, it becomes more
difficult to achieve a low-probability design as the number of subcomponents increases.

In Fig. 12, variations of the probability versus the mean value of b for various subcomponent numbers are
given. All the statistical properties except E(b) for the tuned case are employed to obtain the results. For a
periodic system having small number of subcomponents, a low-probability design can be achieved by
increasing E(b). However, as the number of subcomponents increases, the probability is only slightly
influenced by E(b) in its large value range. Also, the value of E(b) where the maximum probability occurs
increases as the number of subcomponents increases. Therefore, for periodic systems having large number of
subcomponents, it is more effective to choose a small value for E(b) to achieve a low-probability design.

In Fig. 13, variations of the probability versus the normalized standard deviation of b for various
subcomponent numbers are given. All the statistical properties except s̄b for the tuned case are employed to
obtain the results. As can be shown in the figure, the probability is rarely influenced by s̄b (even if it increases
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Fig. 11. Probability variations versus soi
for various subcomponent numbers (EðoiÞ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005, s̄b ¼ 0:05,

s̄B ¼ 0:05).

Fig. 12. Probability variations versus E(b) for various subcomponent numbers (EðoiÞ ¼ 1:0, EðBÞ ¼ 0:005, soi
¼ 0:002, s̄b ¼ 0:05,

s̄B ¼ 0:05).

Fig. 13. Probability variations versus s̄b for various subcomponent numbers (EðoiÞ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005, soi
¼ 0:01,

s̄B ¼ 0:05).
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as the number of subcomponents increases). Therefore, s̄b is not a good factor to control the frequency
response localization.

In Fig. 14, variations of the probability versus the mean of B for various subcomponent numbers are given.
All the statistical properties except E(B) for the tuned case are employed to obtain the results. As the mean of B
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Fig. 14. Probability variations versus E(B) for various subcomponent numbers (EðoiÞ ¼ 1:0, EðbÞ ¼ 0:002, soi
¼ 0:01, s̄b ¼ 0:05,

s̄B ¼ 0:05).

Fig. 15. Probability variations versus s̄B for various subcomponent numbers (EðoiÞ ¼ 1:0, EðbÞ ¼ 0:002, EðBÞ ¼ 0:005, soi
¼ 0:01,

s̄b ¼ 0:05).
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increases, the probability decreases rapidly. With fixed value of E(B), the probability increases asymptotically
as the number of subcomponents increases.

In Fig. 15, variations of the probability versus the normalized standard deviation of B for various
subcomponent numbers are given. All the statistical properties except s̄B for the tuned case are employed to
obtain the results. As can be shown in the figure, the probability is rarely influenced by s̄B when the number of
subcomponents is small. But as the number of subcomponents increases, the probability decreases slightly as
s̄B increases.

4. Conclusions

In the present study, the effects of statistical properties of the natural frequency, the coupling stiffness and
the damping ratio of a periodic system on the strength of frequency response localization are investigated
through Monte Carlo simulation. The strength of frequency response localization is defined and the
probabilities that the localization strength exceeds certain values are calculated. It is found that the
probabilities are significantly influenced by some statistical properties of parameters. Especially, soi

’s, E(b),
and E[B] turn out to be the most sensitive factors for the frequency response localization. As the number of
subcomponents of a periodic system increases, the localization strength asymptotically increases in general. It
is also found that E(b) needs to determined differently to control the statistical characteristics of frequency
response localization as the number of subcomponents increases.
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